
Executive summary
Curvilinear design layout is becoming increasingly prevalent in the semiconductor
manufacturing industry. One of the applications is silicon photonics. Silicon photonics
design layout requires the use of curvilinear shapes to minimize the loss of signal
strength.

Curvilinear design layouts pose new challenges to computational lithography tools
that were developed mainly to handle Manhattan geometries. It has been found that
the geometry-based error classification used in the optical proximity correction (OPC)
verification flow has limitations in it's ability to support curvilinear designs. In this
paper, we present our innovative work using Siemens EDA Calibre® OPCVerify
Machine Learning (ML) Classify technology to classify error markers in the feature
vector space instead of traditional pattern’s vertices and edges geometries.

There are five steps in our OPCVerify ML Classify flow:

1. Use primary checks to output error markers.

2. Design features and create feature vector kernels.
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3. Collect feature vectors at error marker locations.

4. Prepare patterns with pre-knowledge of desired classify guidance and train the ML

model.

5. Apply ML classify model to classify error markers on the full layout in the feature vector

space.

In our experiments, ML Classify is successful in classifying OPC verification error
markers in curvilinear designs. A drawn silicon photonics layout with 837,072 raw
error locations has demonstrated our ML Classify tool’s capability to reduce the unique
class count from 221,085 - based on conventional geometry-based classify approach -
down to 51. We also developed a feature that provides options to further sub-classify
results by edge types, convex, concave, or straight line, and by polygon’s internal
width and external space to neighboring polygons. The 51 unique class count
becomes 2493 after the further sub-classify process. This methodology is not only
good for silicon photonics application, but also good for other curvilinear photomask
applications, like CL MPCV, MEMS, on-chip metasurface optics, and in general even
Manhattan designs.
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Nowadays the complimentary-metal-oxide-semiconductor (CMOS) manufacturing

industry has gone deep into the single digit technology node era. It’s more and more

challenging to develop the advanced technology nodes. The regular doubling of

integration density in every two years appears to be slowing down. In the foreseeable

future, there will be decreasing focus on shrinking the device size and increasing

focus on the sequential introduction of increasingly diverse device technologies [1].

In the field of semiconductor manufacturing, from the breadth perspective of the

future development, commercialized silicon photonics technology is a promising

application. It is to make photonic and opto-electronic devices integrated onto a

single microchip. To mass-produce the photonic and opto-electronic devices at low

cost, the industry is leveraging the same manufacturing techniques as those used in

traditional CMOS manufacturing processes. Silicon photonics devices are truly CMOS

compatible in the form of silicon-on-insulator (SOI) waveguide. SOI waveguides are

used to form modulators, switches, etc. photonics devices. They are also used to

route light between photonics devices. This is possible because silicon is transparent

in the wide spectral regions extending from near to mid infrared, especially

importantly at the telecommunication wavelength windows from 1460 nm to 1565

nm. The refractive index of silicon can be modulated by electro-optic effects. These

facts make it very promising for making passive and active opto-electronic devices

[2–11]. Silicon Photonics design layouts require the use of curvilinear shapes to

minimize the loss of signal strength. Some other wide applications of semiconductor

manufacturing platform include MEMS and metasurface optics. They also require the

use of curvilinear shapes. MEMS is an integrated system that combines mechanical

and electrical components [12-14]. Metasurface optics is making optical system

comprised of optical components such as lenses, splitters/couplers, waveplates,

polarizers, etc., in a flat form in a thin layer on a substrate [15-17].

Introduction
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In the field of semiconductor manufacturing, from the depth perspective of the future

development, there are trends that are leading to increased use of curvilinear designs

in the mask data preparation (MDP) flow. For example, Inverse Lithography

Techniques Optical Proximity Correction (ILT OPC) and multi-beam mask writers will

increase the use of curvilinear design. As the industry pushes toward advanced nodes

[18], ILT OPC is going to play a growing role in addressing challenges of

photolithography. Based on the simulation results of Image Log Slope (ILS), Process

Viability (PV) Band, and Depth of Focus (DOF), the benefit of using ILT is clear.

Curvilinear result was demonstrated to be best in all different ILT results, although the

magnitude is pattern dependent. To harvest the benefit of improved process window

from ILT OPC, it is necessary to write mask in curvilinear shapes. During the MDP flow,

for CL MPC, CL MPCV, and CL MRC, the input is as-if curvilinear design [19-21].

Curvilinear design layout is becoming increasingly prevalent in semiconductor

manufacturing. The characteristics of curvilinear design include: 1. edges are in

arbitrary angle, 2. vertex and edge counts are large, 3. possible consistency issue in

snapping to nearest grid in computing tools. Because of these characteristics,

curvilinear design layout poses new challenges to computational lithography tools

that were developed mainly to handle Manhattan geometries.

A version of this paper was presented at the SPIE Advanced Lithography conference

2022 and published in the proceedings.

White Paper – Machine Learning based error classification for curvilinear designs

SIEMENS DIGITAL INDUSTRIES SOFTWARE 5



Background and problem statement

Many challenges in dealing with curvilinear designs have been discussed [18-22].

However, classifying the OPC verification checking result markers for reviewing

purpose has not been discussed yet. In this paper, we describe the problem we have

encountered at work and our development of a machine learning based classify

solution in Calibre® OPCVerify ML Classify technology.

Each OPC verification checking result marker represents a location on the target layer.

Classifying locations on a curvilinear target layer is challenging. One challenge is that

some patterns placed at different X-Y coordinates may be classified differently even

though they are the same pattern. This is due to the fact that the context target layer

is curvilinear and hence prone to grid snapping inconsistency. Another challenge is

that vertices and edges counts are large on a curvilinear layer, and there can be many

small jogs. Hence two factors are important for classifying locations on a curvilinear

layer. First, error markers should be anchored with context layer’s vertices to be more

resistant to grid snapping inconsistency. Second, classifier should allow some coarse

match tolerance to be more resistant to small jogs on edges. The goal is to classify

error categories so that very similar errors are grouped into a much smaller number of

categories that can be reviewed. Error review cycle time can be improved with a

smaller number of unique categories needed for review.

Geometry-based classify solution

We study the behavior of geometry-based basic classifier on curvilinear design.

Consider a simple circle shape with radius 20 um, as shown in Figure 1. We densely

put highlight markers around the edge and classify the markers using the circle as the

context layer. These highlight markers could be generated by DRC checks, e.g., width

or space check, or by ORC checks, e.g., pinch or bridge or Edge Placement Error (EPE)

check. We use coloring scheme to represent classify results. Markers in different colors

Challenge in classifying locations in
curvilinear design
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are in different classes. Markers in the same color may be in the same class, with the

reminder that because number of colors for use is limited and colors will be

repeatedly used when all unique colors are used up. From a user’s point of view, the

expectation is that all the markers should be classified into the same class because a

circle should be considered as one same pattern no matter where the detection

location is on the edge. This is illustrated in Figure 1(a). We use a geometry-based

basic classifier to classify the markers. Both anchoring to context layer’s vertices and

coarse match tolerance are used. The result is shown in Figure 1(b). We can see that

markers that are symmetrically located along X or Y axis are classified into same class,

while neighboring markers are classified into different classes. This means the

behavior of the geometry-based basic classifier is edge-angle dependent. However,

this does not satisfy the user’s expectation in this specific circle pattern. This edge-

angle dependency means a geometry-based basic classifier is not a good fit for

curvilinear designs. We need to find a better solution to classify verification error

markers for curvilinear design layouts. Ideally, users can control the classifier’s

behavior according to the specific use case.

*Figure 1. A simple circle with radius 20 um, a typical pattern in curvilinear design

layout. Highlight markers are densely placed on the edge. The markers are classified

using different classifiers. The results are shown in (a) expectation of classifier results,

(b) geometry-based basic classifier results. Coloring scheme is used to represent
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classify results. Markers in different colors are in different classes. Markers in the same

color may be in the same class, with the reminder that because number of colors for

use is limited and colors will be repeatedly used when all unique colors are used up.
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Calibre® ML platform

At Siemens EDA, our Calibre® ML platform is very powerful [23-26]. There are five

modules as shown in Figure 2: ML Design, ML Process, ML Engine, ML Database, and

ML Analytics. The ML Engine provides unsupervised, semi-supervised, and supervised

ML model training. There are many applications in the ML Analytics module,

including pattern reduction, pattern coverage, model coverage, layout comparison,

hotspot prediction, defect classification. The OPCVerify ML classify application is using

a small portion of our ML platform’s capabilities. It collects geometry information of

the context layer at each error marker location and performs semi-supervised

classification.

*Figure 2. Siemens EDA Calibre® ML platform. There are five modules: ML Design, ML

Process, ML Engine, ML Database, and ML Analytics. The ML Engine provides

unsupervised, semi-supervised, and supervised ML model training.

ML-based classify in the feature
vector space
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Steps in ML classify

There are five steps in our OPCVerify ML Classify, as shown in Figure 3:

1. Use primary checks to output error markers.

2. Design features and create feature vector kernels.

3. Collect feature vectors at error marker locations.

4. Prepare patterns with pre-knowledge of desired classify guidance and train ML

model.

5. Apply ML classify model to classify error markers on the full layout in the

feature vector space.

*Figure 3. Schematics of steps in ML classify.

Primary check

An OPCVerify primary check is used to prepare error markers on the layout. Any

primary check can be used, for example, contour_diff, measure_epe, meefcheck,

pinch, bridge, measure_distance, etc. Feature vector data are collected at the center

of the error marker.

Design features and create feature vector kernels

Siemens EDA Calibre® OPCVerify ML Classify tool can classify patterns in the feature

vector space. It can classify geometrically similar patterns and can also classify

lithographically similar patterns. The success in classifying patterns relies on the

proper design of features and creation of feature vector kernels. In the current task,

White Paper – Machine Learning based error classification for curvilinear designs

SIEMENS DIGITAL INDUSTRIES SOFTWARE 10



we focus on classifying geometrically similar patterns. So geometrical pattern density

kernels are enough. In Calibre® ML Engine, we have gaussian, elliptical gaussian,

tophat, ring, and their variant kernel designs to choose from, as shown in Figure 4.

For the silicon photonics design that we are working on, the critical dimension is

about 100 nm, halo size that we want to use for classification is 1 µm. We designed

the density kernels accordingly.

*Figure 4. Typical density kernels for feature vector data collection.

Collect feature vectors at error marker locations

After a primary check catches errors, feature vectors from the target layer are

collected at the centers of the error markers using the feature vector kernels specified.

Some examples of density kernels are given in Figure 4. All the feature vectors

collected from a full chip comprise of the feature vector space.

Prepare patterns with pre-knowledge of desired classify guidance and train
ML model

Our ML classify is semi-supervised. We provide pre-knowledge of desired classify

guidance. For a simple example, we can provide two classify guidance rules.

Rule 1: Polygons with widths in large difference should be classified into different

classes. This is illustrated in Figure 5(a).

Rule 2: Polygons with same width and similar pattern densities should be classified

into same class. This is illustrated in Figure 5(b).
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*Figure 5. Pre-knowledge of desired classify guidance rules. (a) Polygons with widths

in large difference should be classified into different classes. (b) Polygons with same

width and similar pattern densities should be classified into same class.

Before feature vector capturing, we tag some patterns that fall into the guidance

rules. During feature vector capturing, we let the tool compute some geometrical

properties and then label the tagged error markers based on the computed values.

After feature vectors are captured, we use the labeled feature vectors data points to

train a semi-supervised ML classify model and save the model. This model can be

trained once and then repeatedly used on future full chips.

Classification on full chip

After we have trained the ML model, we apply it on the data of full chip.

Further sub-classify with user-input tolerance control

The ML classify is based on a coarse primary matching. We may want to further sub-

classify the results with even finer matching based on user-input tolerance control.

For example, a straight-line edge, a convex edge, and a concave edge may have the

same pattern densities and are classified into the same class. We may want to put

them into three different classes based on their edge types, as shown in Figure 6(a).
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Another example, a taper line’s width changes gradually. When the width change is

within a tolerance limit, we put them into the same class. However, when the width

change is beyond a tolerance limit, we want to put them into different classes, as

shown in Figure 6(b). Still another example, a coupler’s gap space changes gradually.

When the space change is within a tolerance limit, we put them into the same class.

However, when the space change is beyond a tolerance limit, we want to put them

into different classes, as shown in Figure 6(c).
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Experimental layout

We drew a silicon photonics layout for the experiment. The idea of device layout is

from reference [27], as shown in Figure 7.

*Figure 7. Device layout is from reference [27] https://www.photonics.intec.ugent.be/

download/pub_4128.pdf.

Our full layout size is 3.5 mm x 2.5 mm. We put in four variants of the silicon

waveguide width: 350 nm, 400 nm, 450 nm, and 500 nm. We also drew circle shapes

and concentric ring shapes. The radius, width, and space are modulated for better

studying the classify results. The minimum width and minimum space in the design

are both 100 nm. Our experimental full layout is shown in Figure 8.

Experimental setup and results
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*Figure 8. Experimental full layout for ML classify study. Full layout size is 3.5 mm x

2.5 mm.

Experimental setup

Clalibre OPCVerify primary check measure_epe is used to output error markers. The

constraint is absolutely loose and spacing is 400 nm, so that the epe value does not

matter and there is an output error marker in every 400 nm along Silicon layer’s

edges. This setting is for testing the ML classifier’s capability. The total error count is

837,072. Pattern density features are used for feature vector collection. We used

purple marker layer to tag and label the error markers for ML model training. We

compute curvature, polygon width and space at each error marker location for further

sub-classify purpose.

ML classify results on full layout

The two classifying guidance rules, as shown in Figure 5, were used to train the ML

classify model. After model training, the best model was saved and applied on the full

layout. Total 837,072 error markers were classified into 51 unique classes. We can
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define classify ratio as total error markers count divided by classified unique classes

count. The classify ratio here is 16413. This is a desirable outcome, since it would be

impractical to review over 800000 errors, while 51 canonical categories are much

more manageable. In addition to the big improvement in classify ratio, the capability

of differentiating unique patterns is not compromised, this has been verified through

the pre-designed test patterns. The results are shown in Figure 9. The results show

that the two guidance rules are carried out correctly on the full layout classified

results: 1. silicon waveguides with width 350 nm, 400 nm, 450 nm, and 500 nm are

put into different classes, 2. patterns with same width and similar pattern densities

are put into same class, regardless the shape is straight line, or curved line, or ring.

*Figure 9. ML classify results on full layout. Silicon waveguides with width 350 nm,

400 nm, 450 nm, and 500 nm are put into different classes. Patterns with same width

and similar pattern densities are put into same class, regardless the shape is straight

line, or curved line, or ring.

The results can also be reviewed in tree structure, as shown in Figure 10. The tree has

two levels.
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*Figure 10. Tree structure of the ML classify results of the full layout. The tree has two

levels.

Further sub-classify results on full layout

After the total 837,072 error markers were classified into 51 unique classes, we can

further sub-classify the results by edge type, polygon width, and gap space. The sub-

classify of edge type is categorical, convex edge, concave edge, or straight-line edge.

Tolerance of 10 nm is used to sub-classify the results by polygon width. Similarly,

tolerance of 10 nm is used to sub-classify the results by gap space. After the further

sub-classify, the 51 unique classes become 2493. The classify ratio is 336. The results

are shown in Figure 11. This further sub-classify step is optional. User can choose

from multiple features. This provides the flexibility and capability for user to further

fine tune the behavior of the classifier so that the results meet user’s expectation.
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*Figure 11. Further sub-classify results on full layout. The 51 unique classes become

2493.

The results can also be reviewed in tree structure, as shown in Figure 12. The tree has

four levels. The zoomed in view shows deeper branches of the tree.

*Figure 12. Tree structure of the further sub-classify results of the full layout. The tree

has four levels.
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In Calibre OPCVerify ML Classify, a narrowing down strategy is used, the primary

matching is coarse, the optional secondary matching is finer. In geometry-based basic

classify, the primary matching is an exact match, the optional secondary matching is

relaxed by a user-input tolerance control. The comparison of classifying principles

between the ML-based classify and the geometry-based basic classify is shown in

Table 1.

Features

Primary

matching

Secondary

matching

ML classify Densities + selective

geometries

coarse fine

Basic

classify

Vertices & edges fine coarse

*Table 1. Comparison table of classifying principles between ML classify and basic

classify.

We compare the classify results on full layout as shown in Figure 13. Figure 13(a) is

ML-based classify results with further sub-classify. Figure 13(b) is geometry-based

basic classify results. For fair comparison, tolerance control of 10 nm is used in both

classify solutions. The zoom in view shows ML-based classify results are pure,

consistent, and satisfactory, however geometry-based basic classify results are

strongly edge angle dependent, a simple ring pattern is classified into unnecessary

large number of unique classes. The classify ratio of ML classify is 336, that of basic

classify is only 4. The numbers are shown in Table 2.

Comparisons between ML-based and
geometry-based classify
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*Figure 13. Comparison of classifying results on full layout. (a) ML-based classify with

further sub-classify. (b) Geometry-based basic classify. Tolerance control of 10 nm is

used in both classify solutions.

Total data count Number of classes Classify ratio

ML classify 837,072 2,493 336

Basic classify 837,072 221,085 4

*Table 2. Comparison table of classifying results on full layout between ML classify

and basic classify.
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In summary, we have developed a machine learning-based verification error

classification method. The good accuracy is achieved by properly design the density

kernels. The tuning of density kernels is based on the dimensions of the features

being checked. We get good results on full layout. This conclusion is drawn based on

the ability to train the ML model in a way that allows the user to achieve good

classification ratios (fewer errors to review) while still having the ability to

differentiate between error examples that are sufficiently different to warrant

separation in the classification categories. Our tool has large capacity in handling

large data volume on full chip layouts. For this paper, we used the Calibre OPCVerify

ML Classify solution on silicon photonics layouts. Next, we will apply the solution on

other curvilinear layouts and Manhattan layouts as well. We are confident that our ML

classify solution will continue to perform well in those new application use cases.

Summary and conclusion
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